Physics-informed neural networks (PINNs) show great advantages in solving partial differential equations. In this paper, we for the first time propose to study conformable time fractional diffusion equations by using PINNs. By solving the supervise learning task, we design a new spatio-temporal function approximator with high data efficiency. L-BFGS algorithm is used to optimize our loss function, and back propagation algorithm is used to update our parameters to give our numerical solutions. For the forward problem, we can take IC/BCs as the data, and use PINN to solve the corresponding partial differential equation. Three numerical examples are are carried out to demonstrate the effectiveness of our methods. In particular, when the order of the conformable fractional derivative $\alpha$ tends to $1$, a class of weighted PINNs is introduced to overcome the accuracy degradation caused by the singularity of solutions. For the inverse problem, we use the data obtained to train the neural network, and the estimation of parameter $\lambda$ in the equation is elaborated. Similarly, we give three numerical examples to show that our method can accurately identify the parameters, even if the training data is corrupted with 1\% uncorrelated noise.


翻译:物理知情神经网络( PINNs) 在解决部分偏差方程式方面显示出巨大的优势。 在本文中, 我们首次提议通过使用 PINNs 来研究符合时分扩散方程式。 通过解决监督学习任务, 我们设计了一个新的具有高数据效率的时空函数相容器。 L- BISGS 算法用于优化我们的损失功能, 后传算法用于更新参数以提供我们的数字解决方案。 对于前期问题, 我们可以将IC/ BCs作为数据, 并使用 PINN 来解决相应的部分偏差方程。 进行了三个数字示例以展示我们的方法的有效性。 特别是当可兼容的分数衍生物$\alpha$ 的顺序倾向于为1美元时, 我们引入了一组加权的 PINNs 来克服解决方案的单一性造成的准确性退化。 对于反向问题, 我们用所获得的数据来培训神经网络, 并且用参数 $\ lambda$ 来估算方程式中的参数 。 同样, 我们用三个数字示例来显示我们的方法能够准确辨明比 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月14日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员