The Deferred Correction is an iterative procedure used to design numerical methods for systems of ODEs, characterized by an increasing accuracy at each iteration. The main advantage of this framework is the automatic way of getting arbitrarily high order methods, which can be put in Runge-Kutta form, based on the definition of subtimenodes in each timestep. The drawback is a larger computational cost with respect to the most used Runge-Kutta methods. To reduce such cost, in an explicit setting, we propose an efficient modification: we remove the unnecessary subtimenodes in all the iterations, introducing interpolation processes between them. We provide the Butcher tableaux of the novel methods and we study their stability, showing that in some cases the computational advantage does not affect the stability. The flexibility of the novel modification allows nontrivial applications to PDEs and construction of adaptive methods. The good performances of the introduced methods are broadly tested on several benchmarks both in the ODE and PDE settings.
翻译:递延校正是一种迭代程序,用于设计数字代码系统的数字方法,其特点是每次迭代的精确度不断提高。这个框架的主要优点是自动地获得任意的高顺序方法,根据每个时段的子时针定义,可以将其以龙格-库塔形式出现。相对于最常用的龙格-库塔方法而言,其缺点是一个较大的计算成本。为了降低这种成本,我们提议一个有效的修改:我们在所有迭代中取消不必要的子时针,引入它们之间的内插过程。我们提供了新方法的布彻表,并研究了这些方法的稳定性,表明在某些情况下计算优势不会影响稳定性。新修改的灵活性允许对PDE的无边性应用和适应方法的构建。为了降低这种成本,我们提议了一个有效的修改:我们在所有迭代中消除了不必要的子时针,引入了它们之间的内插过程。我们提供了新方法的布彻方块,并研究了这些方法的稳定性,表明在某些情况下,计算优势不会影响稳定性。新的修改允许对PDE进行非边际应用和适应性方法的构建。为了降低成本,我们提出的方法的良好性,在数字交换和PDE设置的若干基准上都经过了广泛的测试。