We investigate the validity of two resampling techniques when carrying out inference on the underlying unknown copula using a recently proposed class of smooth, possibly data-adaptive nonparametric estimators that contains empirical Bernstein copulas (and thus the empirical beta copula). Following \cite{KirSegTsu21}, the first resampling technique is based on drawing samples from the smooth estimator and can only can be used in the case of independent observations. The second technique is a smooth extension of the so-called sequential dependent multiplier bootstrap and can thus be used in a time series setting and, possibly, for change-point analysis. The two studied resampling schemes are applied to confidence interval construction and the offline detection of changes in the cross-sectional dependence of multivariate time series, respectively. Monte Carlo experiments confirm the possible advantages of such smooth inference procedures over their non-smooth counterparts. A by-product of this work is the study of the weak consistency and finite-sample performance of two classes of smooth estimators of the first-order partial derivatives of a copula which can have applications in mean and quantile regression.
翻译:在使用最近提出的光滑的、可能数据适应的、非参数性非参数性估测器,包括实验性的伯恩斯坦阳极(并因此包括实验性的乙型阴极),我们调查了两种重新取样技术的有效性。继\cite{KirSegTsu21}之后,第一个重新取样技术的基础是从光滑的估测器抽取样本,只能用于独立观测。第二个技术是所谓的按顺序依附的倍增靴的顺利延伸,因此可以用于时间序列设置,并可能用于变化点分析。两个经过研究的重新取样方法分别用于建立信任间隔的构造和对多变换时间序列跨部门依赖性变化的离线检测。蒙特卡洛实验证实,这种顺利推断程序对其非湿润的对应方可能有好处。这项工作的一个副产品是研究两个等级的光滑的测测点部分衍生物的两类均匀一致性和定模性性性性性能,它们可以平均地在回转式中应用。