Domain adaptation of 3D portraits has gained more and more attention. However, the transfer mechanism of existing methods is mainly based on vision or language, which ignores the potential of vision-language combined guidance. In this paper, we propose an Image-Text multi-modal framework, namely Image and Text portrait (ITportrait), for 3D portrait domain adaptation. ITportrait relies on a two-stage alternating training strategy. In the first stage, we employ a 3D Artistic Paired Transfer (APT) method for image-guided style transfer. APT constructs paired photo-realistic portraits to obtain accurate artistic poses, which helps ITportrait to achieve high-quality 3D style transfer. In the second stage, we propose a 3D Image-Text Embedding (ITE) approach in the CLIP space. ITE uses a threshold function to self-adaptively control the optimization direction of images or texts in the CLIP space. Comprehensive experiments prove that our ITportrait achieves state-of-the-art (SOTA) results and benefits downstream tasks. All source codes and pre-trained models will be released to the public.


翻译:三维肖像领域自适应越来越受到关注。然而,现有方法的转移机制主要基于视觉或语言,忽略了图文组合指导的潜力。在本文中,我们提出了一种图像-文本多模态框架,即图像和文本肖像(ITportrait),用于三维肖像领域自适应。ITportrait依赖于两阶段交替训练策略。在第一阶段,我们采用了一种3D艺术配对转移(APT)方法进行图像引导的风格转移。APT构建成对的照片逼真的肖像,以获取准确的艺术姿势,有助于ITportrait实现高质量的三维风格转移。在第二阶段,我们提出了一种3D图像-文本嵌入(ITE)方法,在CLIP空间中使用阈值函数自适应地控制图像或文本的优化方向。全面的实验证明了我们的ITportrait实现了最先进的结果,并有利于下游任务。所有源代码和预训练模型将向公众发布。

0
下载
关闭预览

相关内容

领域自适应是与机器学习和转移学习相关的领域。 当我们的目标是从源数据分布中学习在不同(但相关)的目标数据分布上的良好性能模型时,就会出现这种情况。 例如,常见垃圾邮件过滤问题的任务之一在于使模型从一个用户(源分发)适应到接收显着不同的电子邮件(目标分发)的新模型。 注意,当有多个源分发可用时,该问题被称为多源域自适应。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
CVPR 2023 | GFPose: 在梯度场中编码三维人体姿态先验
专知会员服务
18+阅读 · 2023年3月25日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
DeepMind开源最牛无监督学习BigBiGAN预训练模型
新智元
10+阅读 · 2019年10月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
CVPR 2023 | GFPose: 在梯度场中编码三维人体姿态先验
专知会员服务
18+阅读 · 2023年3月25日
 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
28+阅读 · 2020年5月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员