Unsupervised learning on 3D point clouds has undergone a rapid evolution, especially thanks to data augmentation-based contrastive methods. However, data augmentation is not ideal as it requires a careful selection of the type of augmentations to perform, which in turn can affect the geometric and semantic information learned by the network during self-training. To overcome this issue, we propose an augmentation-free unsupervised approach for point clouds to learn transferable point-level features via soft clustering, named SoftClu. SoftClu assumes that the points belonging to a cluster should be close to each other in both geometric and feature spaces. This differs from typical contrastive learning, which builds similar representations for a whole point cloud and its augmented versions. We exploit the affiliation of points to their clusters as a proxy to enable self-training through a pseudo-label prediction task. Under the constraint that these pseudo-labels induce the equipartition of the point cloud, we cast SoftClu as an optimal transport problem. We formulate an unsupervised loss to minimize the standard cross-entropy between pseudo-labels and predicted labels. Experiments on downstream applications, such as 3D object classification, part segmentation, and semantic segmentation, show the effectiveness of our framework in outperforming state-of-the-art techniques.


翻译:在3D点云上进行的未经监督的学习经历了迅速的演变,特别是由于基于数据增强的对比方法。然而,数据增强并不理想,因为它需要仔细选择要执行的增强类型,而这反过来又会影响网络在自我训练期间学到的几何和语义信息。为了克服这一问题,我们建议对点云采取无增强、不受监督的方法,通过软团群来学习可转移的点水平特征,名为 SoftClu。 SoftClu 认为组的点在几何空间和特征空间都应该彼此接近。这与典型的对比性学习不同,后者为整个点云及其扩大版本建立相似的表达方式。我们利用点与其组的关联性作为代理,以便通过假标签预测任务进行自我训练。由于这些假标签诱导点云的配置,我们将SftClu作为最佳的运输问题。我们形成了一种未经监督的损失,以最大限度地减少伪标签和预测标签之间的标准交叉性交叉性。我们在下游段应用中的实验性框架中展示了3个目标的状态。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月10日
Arxiv
38+阅读 · 2020年12月2日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Arxiv
17+阅读 · 2019年3月28日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员