We approach autonomous drone-based reforestation with a collaborative multi-agent reinforcement learning (MARL) setup. Agents can communicate as part of a dynamically changing network. We explore collaboration and communication on the back of a high-impact problem. Forests are the main resource to control rising CO2 conditions. Unfortunately, the global forest volume is decreasing at an unprecedented rate. Many areas are too large and hard to traverse to plant new trees. To efficiently cover as much area as possible, here we propose a Graph Neural Network (GNN) based communication mechanism that enables collaboration. Agents can share location information on areas needing reforestation, which increases viewed area and planted tree count. We compare our proposed communication mechanism with a multi-agent baseline without the ability to communicate. Results show how communication enables collaboration and increases collective performance, planting precision and the risk-taking propensity of individual agents.
翻译:我们通过合作性多剂强化学习(MARL)来进行自主的无人机重新造林。代理商可以作为动态变化网络的一部分进行交流。我们探索在影响大的问题背后的合作和沟通。森林是控制不断上升的二氧化碳条件的主要资源。不幸的是,全球森林量正在以前所未有的速度下降。许多地区面积太大,难以穿越,无法种植新的树木。为了尽可能有效地覆盖地区,我们提议建立一个基于图表神经网络(GNN)的通信机制,以便开展合作。代理商可以分享需要重新造林的地区的位置信息,从而增加可观察面积和种植树木的数量。我们将我们提议的通信机制与多剂基线进行比较,而没有沟通能力。结果显示通信如何促进合作,提高集体性、种植精确度和单个代理商的冒险倾向。