Cooperative sensing and heterogeneous information fusion are critical to realize vehicular cyber-physical systems (VCPSs). This paper makes the first attempt to quantitatively measure the quality of VCPS by designing a new metric called Age of View (AoV). Specifically, we first present the system architecture where heterogeneous information can be cooperatively sensed and uploaded via vehicle-to-infrastructure (V2I) communications in vehicular edge computing (VEC). Logical views are constructed by fusing the heterogeneous information at edge nodes. Further, we formulate the problem by deriving a cooperative sensing model based on the multi-class M/G/1 priority queue, and defining the AoV by modeling the timeliness, completeness and consistency of the logical views. On this basis, a multi-agent deep reinforcement learning solution is proposed. In particular, the system state includes vehicle sensed information, edge cached information and view requirements. The vehicle action space consists of the sensing frequencies and uploading priorities of information. A difference-reward-based credit assignment is designed to divide the system reward, which is defined as the VCPS quality, into the difference reward for vehicles. Edge node allocates V2I bandwidth to vehicles based on predicted vehicle trajectories and view requirements. Finally, we build the simulation model and give a comprehensive performance evaluation, which conclusively demonstrates the superiority of the proposed solution.


翻译:合作遥感和多种信息融合对于实现视频网络物理系统(VCPS)至关重要。本文件首次尝试通过设计名为 " 观察时代 " (AoV)的新度量 VCPS质量,首次尝试通过设计名为 " 观察时代 " (AoV)的新度量度测试VCPS的质量。具体地说,我们首先提出能够合作感知和通过车辆到基础设施(V2I)通信在车辆边缘计算(Vec)中上传的多种信息的系统结构。逻辑观点是通过在边缘节点使用各种信息构建的。此外,我们提出这一问题,方法是根据多级M/G/1优先排队列生成一个合作感测模型,并通过模拟逻辑观点的及时性、完整性和一致性来界定AovS质量。在此基础上,我们提出了多剂深度强化学习解决方案。特别是系统状态包括车辆感测信息、边缘缓存信息和视图要求。车辆行动空间包括感测频率和上载信息的拟议优先信息。基于差异的信用分配旨在将系统奖分分为VCPS质量、VCPS质量、我们最终对车辆进行预测性评估。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
67+阅读 · 2022年4月13日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
29+阅读 · 2023年2月10日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
67+阅读 · 2022年4月13日
Top
微信扫码咨询专知VIP会员