Analyzing complex and large data as generated in non-destructive testing (NDT) is a time-consuming and mentally demanding challenge. Such data is heterogeneous and integrates primary and secondary derived data from materials or material systems for spatial, spatio-temporal as well as high-dimensional data analysis. Currently, materials experts mainly rely on conventional desktop systems using standard 2D visualization techniques for this purpose. Our framework is a novel immersive visual analytics system, which supports the exploration of complex spatial structures and derived multidimensional abstract data in an augmented reality setting. It includes three novel visualization techniques: MDD-Glyphs, TimeScatter, and ChronoBins, each facilitating the interactive exploration and comparison of multidimensional distributions from multiple datasets and time steps. A qualitative evaluation conducted with materials experts and novices in a real-world case study demonstrated the benefits of the proposed visualization techniques. This evaluation also revealed that combining spatial and abstract data in an immersive environment improved their analytical capabilities and facilitated to better and faster identify patterns, anomalies, as well as changes over time.
翻译:暂无翻译