Orienting objects is a critical component in the automation of many packing and assembly tasks. We present an algorithm to orient novel objects given a depth image of the object in its current and desired orientation. We formulate a self-supervised objective for this problem and train a deep neural network to estimate the 3D rotation as parameterized by a quaternion, between these current and desired depth images. We then use the trained network in a proportional controller to re-orient objects based on the estimated rotation between the two depth images. Results suggest that in simulation we can rotate unseen objects with unknown geometries by up to 30{\deg} with a median angle error of 1.47{\deg} over 100 random initial/desired orientations each for 22 novel objects. Experiments on physical objects suggest that the controller can achieve a median angle error of 4.2{\deg} over 10 random initial/desired orientations each for 5 objects.
翻译:定向对象是许多包装和组装任务自动化的关键组成部分。 我们展示了一种算法, 用于调整新对象, 使其在当前方向和理想方向上具有深度的物体。 我们为此问题设计了一个自我监督的目标, 并训练一个深神经网络, 将这些当前图像和理想深度图像以四进制的参数来估计三维旋转。 然后我们用一个比例控制器来根据两种深度图像之间估计的旋转来重新定位对象。 结果表明, 在模拟中位角度错误为1.47 /deg} 中位角度差超过100个未知初始/ 理想方向, 共22个新对象。 对物理对象的实验显示, 控制器可以在5个对象中位上实现4.2 / deg} 以上10个随机初始/ 方向的中位角度差错。