Question Generation (QG), as a challenging Natural Language Processing task, aims at generating questions based on given answers and context. Existing QG methods mainly focus on building or training models for specific QG datasets. These works are subject to two major limitations: (1) They are dedicated to specific QG formats (e.g., answer-extraction or multi-choice QG), therefore, if we want to address a new format of QG, a re-design of the QG model is required. (2) Optimal performance is only achieved on the dataset they were just trained on. As a result, we have to train and keep various QG models for different QG datasets, which is resource-intensive and ungeneralizable. To solve the problems, we propose a model named Unified-QG based on lifelong learning techniques, which can continually learn QG tasks across different datasets and formats. Specifically, we first build a format-convert encoding to transform different kinds of QG formats into a unified representation. Then, a method named \emph{STRIDER} (\emph{S}imilari\emph{T}y \emph{R}egular\emph{I}zed \emph{D}ifficult \emph{E}xample \emph{R}eplay) is built to alleviate catastrophic forgetting in continual QG learning. Extensive experiments were conducted on $8$ QG datasets across $4$ QG formats (answer-extraction, answer-abstraction, multi-choice, and boolean QG) to demonstrate the effectiveness of our approach. Experimental results demonstrate that our Unified-QG can effectively and continually adapt to QG tasks when datasets and formats vary. In addition, we verify the ability of a single trained Unified-QG model in improving $8$ Question Answering (QA) systems' performance through generating synthetic QA data.


翻译:问题生成 (QG) 是一项具有挑战性的自然语言处理任务, 目的是根据给定的答案和背景生成问题。 现有的 QG 方法主要侧重于为特定的 QG 数据集建立或培训模型。 这些工程有两大限制:(1) 这些工程是针对特定的 QG 格式( 如答- extraction 或多选择 QG ) 的, 因此, 如果我们想要解决 QG 的新格式, 需要重新设计 QG 模型。 (2) 最佳性能只有在它们刚刚训练的数据集上才能实现。 因此, 我们必须为不同的 QG 数据集( 资源密集且不可概括) 培训并保持各种 QG GG 模型。 为了解决问题, 我们提议了一个基于终身学习技术的名为 United- QG G, 它可以不断在不同数据集和格式中学习 。 具体地, 我们首先建立一个格式- converg 将不同的 QA 格式转换成统一的 Q。 然后, 一种名为 IM\\ dremD\ DE 数据 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
31+阅读 · 2021年7月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2022年2月24日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
15+阅读 · 2018年2月4日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
26+阅读 · 2018年11月1日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Arxiv
23+阅读 · 2022年2月24日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
Arxiv
15+阅读 · 2018年2月4日
Arxiv
10+阅读 · 2017年7月4日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员