This paper studies the consistency and statistical inference of simulated Markov random fields (MRFs) in a high dimensional background. Our estimators are based on the Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE) method, penalized by the Elastic-net. Under mild conditions that ensure a specific convergence rate of the MCMC method, the $\ell_{1}$ consistency of Elastic-net-penalized MCMC-MLE is obtained. We further propose a decorrelated score test based on the decorrelated score function and prove the asymptotic normality of the score function without the influence of many nuisance parameters under the assumption that it accelerates the convergence of the MCMC method. The one-step estimator for a single parameter of interest is constructed by linearizing the decorrelated score function to solve its root, and the normality and confidence interval for the true value, is established. We use different algorithms to control the false discovery rate (FDR) for multiple testing problems via classic p-values and novel e-values. Finally, we empirically validate the asymptotic theories and demonstrate both FDR control procedures in our article have good performance.
翻译:本文研究了高维背景中模拟的Markov随机字段(MRFs)的一致性和统计推论。 我们的测算器基于Markov链 Monte Carlo最大可能性估计法(MCMC-MLE),该方法受Elasti-net的处罚。 在确保MCMC方法具体趋同率的温和条件下,获得了Elasti-net-minalized MCMC-MLE 的美元一致性。我们进一步提议根据与装饰有关的评分函数进行一个与装饰有关的评分测试,并证明得分函数的无症状常态性,而没有根据它加速MCMCM方法趋同的假设,许多骚扰参数的影响。 单一利差参数的一阶估计符是,通过将与变相相关的评分函数线化来解决其根,以及真实价值的正常度和信任度间隔。 我们用不同的算法来控制通过经典的P-value和新电子价值的F-value 控制多种测试问题。最后,我们用实验性测试程序验证了我们的良好业绩。</s>