Knowledge about the software used in scientific investigations is necessary for different reasons, including provenance of the results, measuring software impact to attribute developers, and bibliometric software citation analysis in general. Additionally, providing information about whether and how the software and the source code are available allows an assessment about the state and role of open source software in science in general. While such analyses can be done manually, large scale analyses require the application of automated methods of information extraction and linking. In this paper, we present SoftwareKG - a knowledge graph that contains information about software mentions from more than 51,000 scientific articles from the social sciences. A silver standard corpus, created by a distant and weak supervision approach, and a gold standard corpus, created by manual annotation, were used to train an LSTM based neural network to identify software mentions in scientific articles. The model achieves a recognition rate of .82 F-score in exact matches. As a result, we identified more than 133,000 software mentions. For entity disambiguation, we used the public domain knowledge base DBpedia. Furthermore, we linked the entities of the knowledge graph to other knowledge bases such as the Microsoft Academic Knowledge Graph, the Software Ontology, and Wikidata. Finally, we illustrate, how SoftwareKG can be used to assess the role of software in the social sciences.
翻译:由于不同的原因,有必要了解科学调查中使用的软件,包括结果的出处、衡量软件对属性开发者的影响、以及一般的二流计量软件引用分析。此外,提供关于软件和源代码是否以及如何获得的信息,使人们能够评估开放源代码软件在一般科学中的状况和作用。虽然这类分析可以人工进行,但大规模分析需要应用自动信息提取和连接方法。在本文件中,我们介绍了软件KG -- -- 包含来自社会科学的51 000多篇科学文章提及软件的信息的知识图表。一个银本标准文,由遥远和薄弱的监督方法创建,以及一个金本体,用于培训基于LSTM的神经系统网络,以识别科学文章中提及的软件。该模型在精确匹配中达到8.82 F-核心的识别率。结果,我们发现超过133 000个软件提到。关于实体的模糊性,我们使用了公共域知识库DBpedia。此外,我们把知识图表的实体与其他知识库,如微软卡软件、微软软件如何被使用。