We propose {\rm \texttt{ResIST}}, a novel distributed training protocol for Residual Networks (ResNets). {\rm \texttt{ResIST}} randomly decomposes a global ResNet into several shallow sub-ResNets that are trained independently in a distributed manner for several local iterations, before having their updates synchronized and aggregated into the global model. In the next round, new sub-ResNets are randomly generated and the process repeats. By construction, per iteration, {\rm \texttt{ResIST}} communicates only a small portion of network parameters to each machine and never uses the full model during training. Thus, {\rm \texttt{ResIST}} reduces the communication, memory, and time requirements of ResNet training to only a fraction of the requirements of previous methods. In comparison to common protocols like data-parallel training and data-parallel training with local SGD, {\rm \texttt{ResIST}} yields a decrease in wall-clock training time, while being competitive with respect to model performance.
翻译:我们建议 \ rm \ textt{ reistic}, 这是遗留网络(ResNets)的新发行培训协议 。 \ rm \ textt{Resisti}} 随机地将全球 ResNet 分解成几个浅小的子ResNet, 以分布方式独立地为若干本地迭代培训, 然后再将其更新同步并汇总到全球模式中。 在下一轮中, 新的子ResNet 是随机生成的, 程序重复 。 通过构建、 按迭代、 rm \ textt{ reisc}, 将网络参数的一小部分传送给每个机器, 在培训期间从不使用完整模型 。 因此, \ rm\ textt{Resistic} 将ResNet 培训的通信、 记忆和时间要求降低到仅比以前方法要求的一小部分 。 与普通协议相比, 如数据- 语言培训和与本地 SGDD, rm\ text { resister { resister\\\\\\\\\\\\\\\\\\\ 这样的普通协议相比, 导致 挂时钟培训会减少 训练时间 挂时钟训练时间, 同时与模型性能竞争。