Ultrasonic imaging is being used to obtain information about the acoustic properties of a medium by emitting waves into it and recording their interaction using ultrasonic transducer arrays. The Delay-And-Sum (DAS) algorithm forms images using the main path on which reflected signals travel back to the transducers. In some applications, different insonification paths can be considered, for instance by placing the transducers at different locations or if strong reflectors inside the medium are known a-priori. These different modes give rise to multiple DAS images reflecting different geometric information about the scatterers and the challenge is to either fuse them into one image or to directly extract higher-level information regarding the materials of the medium, e.g., a segmentation map. Traditional image fusion techniques typically use ad-hoc combinations of pre-defined image transforms, pooling operations and thresholding. In this work, we propose a deep neural network (DNN) architecture that directly maps all available data to a segmentation map while explicitly incorporating the DAS image formation for the different insonification paths as network layers. This enables information flow between data pre-processing and image post-processing DNNs, trained end-to-end. We compare our proposed method to a traditional image fusion technique using simulated data experiments, mimicking a non-destructive testing application with four image modes, i.e., two transducer locations and two internal reflection boundaries. Using our approach, it is possible to obtain much more accurate segmentation of defects.
翻译:超声成像正在用来获取关于介质声学特性的信息,方法是向介质中释放波浪,并使用超声波转换阵列记录其互动。延迟和Sum(DAS)算法(DAS)算法(DAS)使用反映信号回溯到导体的主路径来显示图像。在某些应用中,可以考虑不同的感应路径,例如将传感器放在不同地点,或者如果在介质内有强反射器已知为优先。这些不同模式产生多种DAS图像,反映关于散射器的不同几何信息,而挑战在于将它们结合到一个图像中,或者直接提取关于介质材料的更高层次信息,例如分解图。传统的图像聚合技术通常使用预先定义图像变换、集中操作和阈限的自动组合。我们建议一个深度神经网络(DNNU)结构,直接将所有可用的数据映射到分解图中,同时明确将DAS图像形成不同的共振路径作为网络层。这样可以使信息流流出关于介介介介质材料的更高层次,例如,即直接使用我们经过数据处理前和图像模拟图像的两种图像测试。 将数据转换为我们进行最高级的图像到最高级的模型,我们最高级的模型,这是使用一种最高级的图像的两种图像的模型,我们最高级的模拟的模型,我们用来到最高级的模拟的模拟的模拟的图像。