Ultrasonic imaging is being used to obtain information about the acoustic properties of a medium by emitting waves into it and recording their interaction using ultrasonic transducer arrays. The Delay-And-Sum (DAS) algorithm forms images using the main path on which reflected signals travel back to the transducers. In some applications, different insonification paths can be considered, for instance by placing the transducers at different locations or if strong reflectors inside the medium are known a-priori. These different modes give rise to multiple DAS images reflecting different geometric information about the scatterers and the challenge is to either fuse them into one image or to directly extract higher-level information regarding the materials of the medium, e.g., a segmentation map. Traditional image fusion techniques typically use ad-hoc combinations of pre-defined image transforms, pooling operations and thresholding. In this work, we propose a deep neural network (DNN) architecture that directly maps all available data to a segmentation map while explicitly incorporating the DAS image formation for the different insonification paths as network layers. This enables information flow between data pre-processing and image post-processing DNNs, trained end-to-end. We compare our proposed method to a traditional image fusion technique using simulated data experiments, mimicking a non-destructive testing application with four image modes, i.e., two transducer locations and two internal reflection boundaries. Using our approach, it is possible to obtain much more accurate segmentation of defects.


翻译:超声成像正在用来获取关于介质声学特性的信息,方法是向介质中释放波浪,并使用超声波转换阵列记录其互动。延迟和Sum(DAS)算法(DAS)算法(DAS)使用反映信号回溯到导体的主路径来显示图像。在某些应用中,可以考虑不同的感应路径,例如将传感器放在不同地点,或者如果在介质内有强反射器已知为优先。这些不同模式产生多种DAS图像,反映关于散射器的不同几何信息,而挑战在于将它们结合到一个图像中,或者直接提取关于介质材料的更高层次信息,例如分解图。传统的图像聚合技术通常使用预先定义图像变换、集中操作和阈限的自动组合。我们建议一个深度神经网络(DNNU)结构,直接将所有可用的数据映射到分解图中,同时明确将DAS图像形成不同的共振路径作为网络层。这样可以使信息流流出关于介介介介质材料的更高层次,例如,即直接使用我们经过数据处理前和图像模拟图像的两种图像测试。 将数据转换为我们进行最高级的图像到最高级的模型,我们最高级的模型,这是使用一种最高级的图像的两种图像的模型,我们最高级的模拟的模型,我们用来到最高级的模拟的模拟的模拟的图像。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
微软发布Visual Studio Tools for AI
AI前线
4+阅读 · 2017年11月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员