We present an efficient, elastic 3D LiDAR reconstruction framework which can reconstruct up to maximum LiDAR ranges (60 m) at multiple frames per second, thus enabling robot exploration in large-scale environments. Our approach only requires a CPU. We focus on three main challenges of large-scale reconstruction: integration of long-range LiDAR scans at high frequency, the capacity to deform the reconstruction after loop closures are detected, and scalability for long-duration exploration. Our system extends upon a state-of-the-art efficient RGB-D volumetric reconstruction technique, called supereight, to support LiDAR scans and a newly developed submapping technique to allow for dynamic correction of the 3D reconstruction. We then introduce a novel pose graph clustering and submap fusion feature to make the proposed system more scalable for large environments. We evaluate the performance using two public datasets including outdoor exploration with a handheld device and a drone, and with a mobile robot exploring an underground room network. Experimental results demonstrate that our system can reconstruct at 3 Hz with 60 m sensor range and ~5 cm resolution, while state-of-the-art approaches can only reconstruct to 25 cm resolution or 20 m range at the same frequency.


翻译:我们提出了一个高效的、弹性的3D LiDAR重建框架,它可以在每秒的多个框架(60米)中重建最大liDAR范围(60米),从而在大型环境中进行机器人探索。我们的方法只需要一个CPU。我们侧重于大规模重建的三大挑战:高频率长距离的LIDAR扫描的整合、环环关闭后进行变形的能力以及长期勘探的可缩放性。我们的系统延伸至最先进的高效RGB-D体积重建技术,称为超8,以支持LIDAR扫描和新开发的子绘图技术,以便能够动态地校正3D重建。我们随后推出一个新的配置图集和子图集融合功能,以使拟议的系统在大环境中更可变缩。我们使用两个公共数据集评估性能,包括用手持装置和无人机进行室室外探索,以及使用移动机器人探索地下房间网络。实验结果显示,我们的系统只能在3Hz进行重建,只有60米传感器和~5厘米分辨率,同时进行25米分辨率的状态再造,同时进行25米分辨率的状态再造。

0
下载
关闭预览

相关内容

专知会员服务
87+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
17+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关VIP内容
专知会员服务
87+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
ICRA 2019 论文速览 | 传统SLAM、三维视觉算法进展
计算机视觉life
50+阅读 · 2019年7月16日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡汇总】最强 SLAM Datasets 合辑
泡泡机器人SLAM
17+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
【泡泡一分钟】视觉惯性里程计的信息稀疏化(IROS-2018)
泡泡机器人SLAM
9+阅读 · 2018年12月31日
Top
微信扫码咨询专知VIP会员