Egocentric videos offer fine-grained information for high-fidelity modeling of human behaviors. Hands and interacting objects are one crucial aspect of understanding a viewer's behaviors and intentions. We provide a labeled dataset consisting of 11,243 egocentric images with per-pixel segmentation labels of hands and objects being interacted with during a diverse array of daily activities. Our dataset is the first to label detailed hand-object contact boundaries. We introduce a context-aware compositional data augmentation technique to adapt to out-of-distribution YouTube egocentric video. We show that our robust hand-object segmentation model and dataset can serve as a foundational tool to boost or enable several downstream vision applications, including hand state classification, video activity recognition, 3D mesh reconstruction of hand-object interactions, and video inpainting of hand-object foregrounds in egocentric videos. Dataset and code are available at: https://github.com/owenzlz/EgoHOS
翻译:Egocentic 视频为人类行为的高度忠诚建模提供了精细的信息。 手和互动对象是理解观众行为和意图的一个关键方面。 我们提供了一个标签数据集, 由11, 243张以自我为中心的图像组成, 上面贴有手和物体的像素分解标签, 在多种多样的日常活动中与这些图像互动。 我们的数据集是第一个标记详细的手向对象接触边界的数据集。 我们引入了一种有背景意识的构成数据增强技术, 以适应外传YouTube以自我为中心的视频。 我们展示了我们强大的手向对象分割模型和数据集可以作为一个基础工具, 用来推动或帮助多个下游视觉应用, 包括手状态分类、 视频活动识别、 3D 手向对象互动重建, 以及在以自我为中心的视频中手向地对手向对象的绘图。 数据集和代码可以在 https://github.com/owenzlz/EgoHOS上查阅 。