A combinatorial Gray code for a class of objects is a listing that contains each object from the class exactly once such that any two consecutive objects in the list differ only by a `small change'. Such listings are known for many different combinatorial objects, including bitstrings, combinations, permutations, partitions, triangulations, but also for objects defined with respect to a fixed graph, such as spanning trees, perfect matchings or vertex colorings. This survey provides a comprehensive picture of the state-of-the-art of the research on combinatorial Gray codes. In particular, it gives an update on Savage's influential survey [C. D. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605-629, 1997.], incorporating many more recent developments. We also elaborate on the connections to closely related problems in graph theory, algebra, order theory, geometry and algorithms, which embeds this research area into a broader context. Lastly, we collect and propose a number of challenging research problems, thus stimulating new research endeavors.
翻译:对一类物体的组合式灰色代码是一个列表,它包含该类物体的每个对象,一旦完全包含,清单中的任何两个连续对象都只有“小变化”才有差异。这种列表用于许多不同的组合对象,包括位纹、组合、交替、分区、三角形,但也用于固定图形中界定的物体,如横跨树木、完美匹配或脊椎颜色等。这项调查全面介绍了关于组合式灰色代码研究的最新工艺。特别是,它提供了萨维奇有影响力的调查[C.D.Savage]的最新信息。对组合式灰色代码的调查。SIAM Rev.39(4):605-629,1997年],其中包括许多最新动态。我们还详细阐述了与图形理论、代数、命令理论、几何和算法等密切相关的问题的联系,这些问题将这一研究领域嵌入更广泛的范围。最后,我们收集并提出了若干具有挑战性的研究问题,从而刺激新的研究努力。