3D deep learning is a growing field of interest due to the vast amount of information stored in 3D formats. Triangular meshes are an efficient representation for irregular, non-uniform 3D objects. However, meshes are often challenging to annotate due to their high geometrical complexity. Specifically, creating segmentation masks for meshes is tedious and time-consuming. Therefore, it is desirable to train segmentation networks with limited-labeled data. Self-supervised learning (SSL), a form of unsupervised representation learning, is a growing alternative to fully-supervised learning which can decrease the burden of supervision for training. We propose SSL-MeshCNN, a self-supervised contrastive learning method for pre-training CNNs for mesh segmentation. We take inspiration from traditional contrastive learning frameworks to design a novel contrastive learning algorithm specifically for meshes. Our preliminary experiments show promising results in reducing the heavy labeled data requirement needed for mesh segmentation by at least 33%.
翻译:3D深层学习是一个日益受关注的领域,因为以 3D 格式储存了大量信息。 三角介质是非常规、非统一的 3D 对象的有效代表。 然而, meshes 往往因其高几何复杂性而难以批注。 具体地说, 为 meshes 创建分割面罩既乏味又耗时。 因此, 最好用有限标签的数据来培训分解网络。 自我监督学习是一种不受监督的代言学习形式, 是取代完全监督的学习的一种不断增长的替代方法, 它可以减少对培训的监督负担。 我们提出了 SSL- MEshCNN, 这是一种自我监督的对比学习方法, 用于对CNN进行网形分割前的训练。 我们从传统的对比学习框架中获得灵感, 专门为 meshes 设计一种新的对比学习算法。 我们的初步实验显示, 在将网形分割所需的重标签数据要求减少至少33%方面, 很有希望的结果。