Annotation of large-scale 3D data is notoriously cumbersome and costly. As an alternative, weakly-supervised learning alleviates such a need by reducing the annotation by several order of magnitudes. We propose COARSE3D, a novel architecture-agnostic contrastive learning strategy for 3D segmentation. Since contrastive learning requires rich and diverse examples as keys and anchors, we leverage a prototype memory bank capturing class-wise global dataset information efficiently into a small number of prototypes acting as keys. An entropy-driven sampling technique then allows us to select good pixels from predictions as anchors. Experiments on three projection-based backbones show we outperform baselines on three challenging real-world outdoor datasets, working with as low as 0.001% annotations.
翻译:大规模 3D 数据的批注非常繁琐,代价高昂。 作为替代方法, 受监管的学习不力, 减少了几个数量级的批注, 从而缓解了这种需求。 我们提出了 COARSE3D, 这是3D 分割 的新型建筑 — — 不可想象的对比性学习战略。 由于对比性学习需要作为钥匙和锚的丰富和多样的例子, 我们利用一个原型记忆库, 有效地捕捉到类全球数据集信息, 将少量的原型作为钥匙。 一种由昆虫驱动的取样技术, 然后让我们从预测中选择好的像素作为锚。 对三个基于投影的骨的实验显示三个具有挑战性的真实世界户外数据集的超值基线, 其作用低到 0.001% 的说明 。