Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.
翻译:对神经网络的参数矩阵进行常规化,在深层模型的训练中普遍存在。典型的常规化方法表明使用小随机值进行初始化加权数,并惩罚重量,以推广聚变。然而,在某些情景中,这些广泛使用的技术可能不太有效。在这里,我们研究Koopman自动编码器模型,其中包括一个编码器、一个库普曼操作器层和一个解码器。这些模型设计并致力于解决与物理有关的问题,具有可解释的动态和吸收与物理有关的制约的能力。然而,大多数现有工作采用标准的标准化常规化做法。在我们的工作中,我们迈出了一步,以针对物理相关环境的初始化和惩罚计划来加强库普曼自动编码器。具体地说,我们提出了“egeninit”初始化方案,将库普曼操作员的初始化器从特定的精度分布器、一个库普曼操作器操作器和一个解码。此外,我们建议采用“egenll”处罚办法,将可解释的动力学原理转化为与物理学相关制约。我们用两种合成数据的常规化方法在两个合成数据集上的作用:我们用一个驱动的海中将海平面和海流流流流流流流数据流流数据流的海流数据,将海流数据流流流数据流流的海流数据流到一个数据流到一个海流数据,将海流数据流到海流到海流流到海流数据流的海流数据流数据。