This paper introduces a novel nonlocal partial difference equation (PDE) for labeling metric data on graphs. The PDE is derived as nonlocal reparametrization of the assignment flow approach that was introduced in \textit{J.~Math.~Imaging \& Vision} 58(2), 2017. Due to this parameterization, solving the PDE numerically is shown to be equivalent to computing the Riemannian gradient flow with respect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this potential and show that the basic geometric Euler scheme for integrating the assignment flow is equivalent to solving the PDE by an established DC programming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical schemes is provided and illustrated by numerical experiments.
翻译:本文为图表上标识的计量数据引入了新的非局部部分差异方程式(PDE)。PDE是作为在\ textit{J.~Math.~image ⁇ Vision} 58(2), 2017年。由于这一参数化,在数字上解决PDE等同于在非碳化潜能方面计算里曼梯度流。我们设计了一种将这种潜力分解成正态的convex功能差异(DC)的模型,并表明将分配流整合的基本几何电动方法相当于通过既定的DC编程方法解决PDE。此外,几何集观点揭示了一种利用驱动转让流的矢量字段的更高顺序信息的基本方法,以便设计一个新的加速DC编程计划。我们提供了对两种数值方法的详细趋同分析,并通过数字实验加以说明。