Many public health threats exist, motivating the need to find optimal intervention strategies. Given the stochastic nature of the threats (e.g., the spread of pandemic influenza, the occurrence of drug overdoses, and the prevalence of alcohol-related threats), deterministic optimization approaches may be inappropriate. In this paper, we implement a stochastic optimization method to address aspects of the 2009 H1N1 and the COVID-19 pandemics, with the spread of disease modeled by the open source Monte Carlo simulations, FluTE and Covasim, respectively. Without testing every possible option, the objective of the optimization is to determine the best combination of intervention strategies so as to result in minimal economic loss to society. To reach our objective, this application-oriented paper uses the discrete simultaneous perturbation stochastic approximation method (DSPSA), a recursive simulation-based optimization algorithm, to update the input parameters in the disease simulation software so that the output iteratively approaches minimal economic loss. Assuming that the simulation models for the spread of disease (FluTE for H1N1 and Covasim for COVID-19 in our case) are accurate representations for the population being studied, the simulation-based strategy we present provides decision makers a powerful tool to mitigate potential human and economic losses from any epidemic. The basic approach is also applicable in other public health problems, such as opioid abuse and drunk driving.


翻译:鉴于这些威胁(如大流行性流感的蔓延、吸毒过量的发生和与酒精有关的威胁的普遍程度)的随机性,确定性优化方法可能不合适。在本文件中,我们采用一种随机性优化方法来解决2009年H1N1和COVID-19流行病的各方面问题,以开放源的蒙特卡洛模拟、FluTE和Covasim分别模拟模式模拟的疾病传播为模型。鉴于这些威胁(如大流行性流感的蔓延、吸毒过量的发生和与酒精有关的威胁的普遍程度)的随机性性质,优化的目的是确定干预战略的最佳组合,从而给社会造成最小的经济损失。为了实现我们的目标,这一面向应用型文件使用了分立的同步扰动性随机近似方法(DSSPSA),一种基于循环性模拟的优化算法,以更新疾病模拟软件的投入参数,从而使产出反复地处理最低限度的经济损失。假设疾病传播模拟模型(H1N1和Covasime)是最佳干预战略的最佳组合,以便尽可能减少社会损失。为了达到我们所研究的大规模滥用的类类类类类类、我们所研究的人类的模型,我们所研究的模型中的任何潜在潜在健康损失。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员