In a recent work, Beierle, Brinkmann and Leander presented a recursive tree search for finding APN permutations with linear self-equivalences in small dimensions. In this paper, we describe how this search can be adapted to find many new instances of quadratic APN functions. In particular, we found 12,921 new quadratic APN functions in dimension eight, 35 new quadratic APN functions in dimension nine and five new quadratic APN functions in dimension ten up to CCZ-equivalence. Remarkably, two of the 35 new APN functions in dimension nine are APN permutations. Among the 8-bit APN functions, there are three extended Walsh spectra that do not correspond to any of the previously-known quadratic 8-bit APN functions and, surprisingly, there exist at least four CCZ-inequivalent 8-bit APN functions with linearity $2^7$, i.e., the highest possible non-trivial linearity for quadratic functions in dimension eight.


翻译:Beierle、Brinkmann和Leander在最近的一项工作中,在Beierle、Brinkmann和Leander介绍了为寻找具有小维的线性自我等效的APN变异而进行递合的树木搜索。在本文中,我们描述了如何调整这一搜索,以找到许多新的等式APN功能的新实例。特别是,我们发现第8维有12,9维的12,921个新的四端APN函数,第9维的35个新四端APN函数,以及10至CCZ等效的5个新的四端APN函数。值得注意的是,在9维的35个新的APN函数中,有2个是APN变异。在8位APN函数中,有3个延伸的沃尔什光谱与以前已知的四端8位APN函数不匹配,令人惊讶的是,至少有4个CCZ-等值8位APN函数的直线性为2+7美元,即8维的顶点函数是最高可能的非三端直线性。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员