In this paper, we investigate the homothetic point enclosure problem: given a set $S$ of $n$ triangles with sides parallel to three fixed directions, find a data structure for $S$ that can report all the triangles of $S$ that contain a query point efficiently. The problem is "inverse" of the homothetic range search problem. We present an $O(n\log n)$ space solution that supports the queries in $O(\log n + k)$ time, where $k$ is the output size. The preprocessing time is $O(n\log n)$. The same results also hold for homothetic polygons.
翻译:在本文中,我们调查同质点的封闭问题:考虑到一套固定方向与三个固定方向平行的两边以美元为单位的三角形,为美元寻找一个数据结构,以美元报告所有包含一个查询点的三角形($S美元),问题是同质范围搜索问题的“反向”问题。我们提出了一个美元(n\log n)美元($O(n\log n) + k) 的空间解决方案,用于支持以$O(\log n + k) 时间($k) 表示的查询,其中输出大小为k美元。预处理时间为$O(n\log n) 。对于同质多边形,同样的结果也是相同的。