We address numerical solvers for a poromechanics model particularly adapted for soft materials, as it generally respects thermodynamics principles and energy balance. Considering the multi-physics nature of the problem, which involves solid and fluid species, interacting on the basis of mass balance and momentum conservation, we decide to adopt a solution strategy of the discrete problem based on iterative splitting schemes. As the model is similar (but not equivalent to) the Biot poromechanics problem, we follow the abundant literature for solvers of the latter equations, developing two approaches that resemble the well known undrained and fixed-stress splits for the Biot model. A thorough convergence analysis of the proposed schemes is performed. In particular, the undrained-like split is developed and analyzed in the framework of generalized gradient flows, whereas the fixed-stress-like split is understood as block-diagonal $L^2$-type stabilization and analyzed by means of a relative stability analysis. In addition, the application of Anderson acceleration is suggested, improving the robustness of the split schemes. Finally, we test these methods on different benchmark tests, and we also compare their performance with respect to a monolithic approach. Together with the theoretical analysis, the numerical examples provide guidelines to appropriately choose what split scheme shall be used to address realistic applications of the soft material poromechanics model.


翻译:我们处理特别适合软材料的软体机械模型的数字解答器,因为它一般尊重热力学原理和能源平衡。考虑到这一问题的多物理学性质,涉及固体和液体物种,在质量平衡和势头保护的基础上相互作用,我们决定采用基于迭接分流办法的离散问题解决方案战略。由于该模型类似(但并不等同于)Biot小机械问题,我们遵循后一种方方程式的解答器大量文献,为Biot模型开发两种类似于众所周知的无排解和固定质分解法的方法。对拟议方案进行了彻底的趋同分析。特别是,在普遍梯流的框架内制定和分析未排解的类似分解问题,而固定质分解法被理解为块对直角值 $L2美元 型稳定化,并通过相对稳定分析模型进行分析。此外,我们建议应用安德森加速法,改进分解法的稳健性。最后,我们测试这些方法的软体和软体分解法方法,在普遍梯流流中制定和分析,我们共同选择采用的方法,同时将它们采用的数字分析方法与数字化办法加以比较。我们如何比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
107+阅读 · 2020年5月15日
【新书】Python编程基础,669页pdf
专知会员服务
187+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员