Humans can make predictions on various time scales and hierarchical levels. Thereby, the learning of event encodings seems to play a crucial role. In this work we model the development of hierarchical predictions via autonomously learned latent event codes. We present a hierarchical recurrent neural network architecture, whose inductive learning biases foster the development of sparsely changing latent state that compress sensorimotor sequences. A higher level network learns to predict the situations in which the latent states tend to change. Using a simulated robotic manipulator, we demonstrate that the system (i) learns latent states that accurately reflect the event structure of the data, (ii) develops meaningful temporal abstract predictions on the higher level, and (iii) generates goal-anticipatory behavior similar to gaze behavior found in eye-tracking studies with infants. The architecture offers a step towards the autonomous learning of compressed hierarchical encodings of gathered experiences and the exploitation of these encodings to generate adaptive behavior.
翻译:人类可以在不同的时间尺度和等级层次上做出预测。 因此, 学习事件编码似乎可以起到关键的作用。 在这个工作中, 我们通过自主学习的潜伏事件代码来模拟等级预测的开发。 我们展示了一个等级分级的经常性神经网络结构, 其感知性学习偏向促进了微小变化的潜伏状态的发展, 压缩感官模式序列。 一个较高层次的网络学会预测潜伏状态发生变化的情况。 使用模拟机器人操纵器, 我们证明这个系统 (i) 学习准确反映数据事件结构的潜伏状态, (ii) 在较高层次上制定有意义的时间抽象预测, (iii) 产生类似于在对婴儿进行的眼睛跟踪研究中发现的目标反射行为。 这个结构为自主学习对收集的经验进行压缩的等级编码和利用这些编码来产生适应性的行为提供了一步的步骤。