We deal with a class of fully coupled forward-backward stochastic differential equations (FBSDE for short), driven by Teugels martingales associated with some L\'evy process. Under some assumptions on the derivatives of the coefficients, we prove the existence and uniqueness of a global solution on an arbitrarily large time interval. Moreover, we establish stability and comparison theorems for the solutions of such equations. Note that the present work extends known results by Jianfeng Zhang (Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 4, 927--940), proved for FBSDEs driven by a Brownian motion, to FBSDEs driven by general L\'evy processes.


翻译:我们处理的是一组完全相联的前向后向随机差异方程式(FBSDE,简称FBSDE),由与某些L\'evy过程相关的Teugels martingales驱动。根据对系数衍生物的一些假设,我们证明在任意的很长的时间间隔内,全球解决方案的存在和独特性。此外,我们为这些方程式的解决方案建立了稳定性并比较了理论。请注意,目前的工作延续了张建芬(Discrete Continent. Dyn. Syst. Ser. B 6(2006),第4号,第927-940)的已知结果,证明是受到布朗运动驱动的FBSDEs,与一般L\'evy过程驱动的FBSDEs。

0
下载
关闭预览

相关内容

【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
6+阅读 · 2018年10月3日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员