Existing Visual Question Answering (VQA) models are often fragile and sensitive to input variations. In this paper, we propose a novel approach to address this issue based on modular networks, which creates two questions related by linguistic perturbations and regularizes the visual reasoning process between them to be consistent during training. We show that our framework markedly improves consistency and generalization ability, demonstrating the value of controlled linguistic perturbations as a useful and currently underutilized training and regularization tool for VQA models. We also present VQA Perturbed Pairings (VQA P2), a new, low-cost benchmark and augmentation pipeline to create controllable linguistic variations of VQA questions. Our benchmark uniquely draws from large-scale linguistic resources, avoiding human annotation effort while maintaining data quality compared to generative approaches. We benchmark existing VQA models using VQA P2 and provide robustness analysis on each type of linguistic variation.


翻译:现有视觉问题解答(VQA)模式往往很脆弱,而且对投入差异敏感。在本文件中,我们提出以模块网络为基础解决这一问题的新办法,由此产生两个与语言扰动有关的问题,并使两者之间的视觉推理过程规范化,以便在培训期间保持一致。我们表明,我们的框架明显提高了一致性和概括化能力,显示了受控语言扰动作为VQA模式有用和目前利用不足的培训和规范化工具的价值。我们还提出了VQA Perturbed pairings(VQA P2),一种新的低成本基准和增强管道,为VQA问题创造可控制的语言变异。我们的基准从大规模语言资源中独具特色,避免人文说明努力,同时保持数据质量,同时与典型方法相比。我们用VQA P2作为现有的VQA模型的基准,并对每一种语言变异提供稳健分析。

0
下载
关闭预览

相关内容

视觉问答(Visual Question Answering,VQA),是一种涉及计算机视觉和自然语言处理的学习任务。这一任务的定义如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻译为中文:一个VQA系统以一张图片和一个关于这张图片形式自由、开放式的自然语言问题作为输入,以生成一条自然语言答案作为输出。简单来说,VQA就是给定的图片进行问答。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning Blind Video Temporal Consistency
Arxiv
3+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员