Agile robotics presents a difficult challenge with robots moving at high speeds requiring precise and low-latency sensing and control. Creating agile motion that accomplishes the task at hand while being safe to execute is a key requirement for agile robots to gain human trust. This requires designing new approaches that are flexible and maintain knowledge over world constraints. In this paper, we consider the problem of building a flexible and adaptive controller for a challenging agile mobile manipulation task of hitting ground strokes on a wheelchair tennis robot. We propose and evaluate an extension to work done on learning striking behaviors using a probabilistic movement primitive (ProMP) framework by (1) demonstrating the safe execution of learned primitives on an agile mobile manipulator setup, and (2) proposing an online primitive refinement procedure that utilizes evaluative feedback from humans on the executed trajectories.
翻译:由于机器人高速移动,需要精确和低纬度的感测和控制。 创建既能完成手头任务又能安全执行任务的灵活运动是灵活机器人获得人类信任的关键要求。 这要求设计新的方法,灵活并保持对世界制约因素的了解。 在本文中,我们考虑建立一个灵活和适应性控制器的问题,以完成具有挑战性的灵活机动操作任务,即用轮椅网球机器人击打地面中风。我们提议并评价扩大利用原始概率运动框架(ProMP)学习打击行为的工作,具体方法是(1) 展示在灵活移动操纵器设置上安全执行已学的原始技术,(2) 提出在线原始改进程序,利用人类对执行轨迹的评价反馈。