Generating complete 360-degree panoramas from narrow field of view images is ongoing research as omnidirectional RGB data is not readily available. Existing GAN-based approaches face some barriers to achieving higher quality output, and have poor generalization performance over different mask types. In this paper, we present our 360-degree indoor RGB panorama outpainting model using latent diffusion models (LDM), called IPO-LDM. We introduce a new bi-modal latent diffusion structure that utilizes both RGB and depth panoramic data during training, but works surprisingly well to outpaint normal depth-free RGB images during inference. We further propose a novel technique of introducing progressive camera rotations during each diffusion denoising step, which leads to substantial improvement in achieving panorama wraparound consistency. Results show that our IPO-LDM not only significantly outperforms state-of-the-art methods on RGB panorama outpainting, but can also produce multiple and diverse well-structured results for different types of masks.
翻译:暂无翻译