In this paper, we study the problem $\min_{x\in \mathbb{R}^{d},Nx=v}\sum_{i=1}^{n}f((Ax-b)_{i})$ for a quasi-self-concordant function $f:\mathbb{R}\to\mathbb{R}$, where $A,N$ are $n\times d$ and $m\times d$ matrices, $b,v$ are vectors of length $n$ and $m$ with $n\ge d.$ We show an algorithm based on a trust-region method with an oracle that can be implemented using $\widetilde{O}(d^{1/3})$ linear system solves, improving the $\widetilde{O}(n^{1/3})$ oracle by {[}Adil-Bullins-Sachdeva, NeurIPS 2021{]}. Our implementation of the oracle relies on solving the overdetermined $\ell_{\infty}$-regression problem $\min_{x\in\mathbb{R}^{d},Nx=v}\|Ax-b\|_{\infty}$. We provide an algorithm that finds a $(1+\epsilon)$-approximate solution to this problem using $O((d^{1/3}/\epsilon+1/\epsilon^{2})\log(n/\epsilon))$ linear system solves. This algorithm leverages $\ell_{\infty}$ Lewis weight overestimates and achieves this iteration complexity via a simple lightweight IRLS approach, inspired by the work of {[}Ene-Vladu, ICML 2019{]}. Experimentally, we demonstrate that our algorithm significantly improves the runtime of the standard CVX solver.


翻译:本文研究问题$\min_{x\in \mathbb{R}^{d},Nx=v}\sum_{i=1}^{n}f((Ax-b)_{i})$,其中$f:\mathbb{R}\to\mathbb{R}$为拟自协和函数,$A,N$分别为$n\times d$和$m\times d$矩阵,$b,v$为长度$n$和$m$的向量,且满足$n\ge d$。我们提出一种基于信赖域方法的算法,其所需的预言机可通过$\widetilde{O}(d^{1/3})$次线性系统求解实现,改进了{[}Adil-Bullins-Sachdeva, NeurIPS 2021{]}中$\widetilde{O}(n^{1/3})$的预言机复杂度。该预言机的实现依赖于求解超定$\ell_{\infty}$-回归问题$\min_{x\in\mathbb{R}^{d},Nx=v}\|Ax-b\|_{\infty}$。我们提出一种算法,能以$O((d^{1/3}/\epsilon+1/\epsilon^{2})\log(n/\epsilon))$次线性系统求解获得该问题的$(1+\epsilon)$-近似解。该算法利用$\ell_{\infty}$ Lewis权重上界估计,并受{[}Ene-Vladu, ICML 2019{]}工作启发,通过一种简单的轻量级IRLS方法实现上述迭代复杂度。实验表明,我们的算法较标准CVX求解器在运行时间上有显著提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员