We prove that the list replicability number of $d$-dimensional $\gamma$-margin half-spaces satisfies \[ \frac{d}{2}+1 \le \mathrm{LR}(H^d_\gamma) \le d, \] which grows with dimension. This resolves several open problems: $\bullet$ Every disambiguation of infinite-dimensional large-margin half-spaces to a total concept class has unbounded Littlestone dimension, answering an open question of Alon, Hanneke, Holzman, and Moran (FOCS '21). $\bullet$ Every disambiguation of the Gap Hamming Distance problem in the large gap regime has unbounded public-coin randomized communication complexity. This answers an open question of Fang, G\"o\"os, Harms, and Hatami (STOC '25). $\bullet$ There is a separation of $O(1)$ vs $\omega(1)$ between randomized and pseudo-deterministic communication complexity. $\bullet$ The maximum list-replicability number of any finite set of points and homogeneous half-spaces in $d$-dimensional Euclidean space is $d$, resolving a problem of Chase, Moran, and Yehudayoff (FOCS '23). $\bullet$ There exists a partial concept class with Littlestone dimension $1$ such that all its disambiguations have infinite Littlestone dimension. This resolves a problem of Cheung, H. Hatami, P. Hatami, and Hosseini (ICALP '23). Our lower bound follows from a topological argument based on a local Borsuk-Ulam theorem. For the upper bound, we construct a list-replicable learning rule using the generalization properties of SVMs.
翻译:暂无翻译