Nonlinear system design is often a multi-objective optimization problem involving search for a design that satisfies a number of predefined constraints. The design space is typically very large since it includes all possible system architectures with different combinations of components composing each architecture. In this article, we address nonlinear system design space exploration through a two-step approach encapsulated in a framework called Fast Design Space Exploration of Nonlinear Systems (ASSENT). In the first step, we use a genetic algorithm to search for system architectures that allow discrete choices for component values or else only component values for a fixed architecture. This step yields a coarse design since the system may or may not meet the target specifications. In the second step, we use an inverse design to search over a continuous space and fine-tune the component values with the goal of improving the value of the objective function. We use a neural network to model the system response. The neural network is converted into a mixed-integer linear program for active learning to sample component values efficiently. We illustrate the efficacy of ASSENT on problems ranging from nonlinear system design to design of electrical circuits. Experimental results show that ASSENT achieves the same or better value of the objective function compared to various other optimization techniques for nonlinear system design by up to 54%. We improve sample efficiency by 6-10x compared to reinforcement learning based synthesis of electrical circuits.
翻译:非线性系统设计往往是一个多目标优化问题,它涉及寻找能够满足若干预定限制条件的设计。设计空间通常非常大,因为它包括所有可能的系统结构,各组成部分组合构成每个结构。在本条中,我们通过一个名为“非线性系统快速设计空间探索”的框架(ASSENT)的两步方法处理非线性系统设计空间探索问题。第一步,我们使用遗传算法来寻找允许对组件值或固定结构的其他部分值作出不同选择的系统结构。这一步骤产生粗略的设计,因为系统可能达到或可能达不到目标规格。第二步,我们使用反向设计来搜索连续的空间和微调部分的部件价值,目的是提高目标功能的价值。我们使用神经网络来模拟系统的反应。神经网络被转换成混合内线性程序,以便积极学习样本部分值,我们用非线性系统设计到电子电路线路设计可能或可能达不到目标规格。我们通过实验结果通过非线性分析系统实现其他精度的精度,从而通过非线性精度系统实现其他精度的精度分析效率。我们通过实验结果,通过不同系统实现非亚性精度的精度系统,通过不细性精度的精度的精度的精度到比性精度的精度的精度的精度性精度性精度的精度的精度性精度性精度的精度系统,通过其他精度性精度性精度技术来显示性精度到精度性精度技术来显示性精度性精度效率。