Online trajectory optimization techniques generally depend on heuristic-based contact planners in order to have low computation times and achieve high replanning frequencies. In this work, we propose ContactNet, a fast acyclic contact planner based on a multi-output regression neural network. ContactNet ranks discretized stepping regions, allowing to quickly choose the best feasible solution, even in complex environments. The low computation time, in the order of 1 ms, makes possible the execution of the contact planner concurrently with a trajectory optimizer in a Model Predictive Control (MPC) fashion. We demonstrate the effectiveness of the approach in simulation in different complex scenarios with the quadruped robot Solo12.
翻译:在线轨迹优化技术一般取决于基于逻辑的接触规划者,以便降低计算时间并实现高再规划频率。 在这项工作中,我们提议建立联系网,这是一个基于多输出回归神经网络的快速循环联系规划器。 联系网将分散的阶梯区域排在前列,允许快速选择最佳可行解决方案,即使在复杂环境中也是如此。 低的计算时间大约为1毫秒,使得能够同时执行联系规划者,同时以模型预测控制(MPC)方式优化轨道。 我们展示了与四重机器人Solo12模拟不同复杂情景的方法的有效性。