A radio labeling of a graph $G$ is a function $f : V(G) \rightarrow \{0,1,2,\ldots\}$ such that $|f(u)-f(v)| \geq diam(G) + 1 - d(u,v)$ for every pair of distinct vertices $u,v$ of $G$. The radio number of $G$, denoted by $rn(G)$, is the smallest number $k$ such that $G$ has radio labeling $f$ with max$\{f(v):v \in V(G)\} = k$. In this paper, we give a lower bound for the radio number for the Cartesian product of the generalized Petersen graph and tree. We present two necessary and sufficient conditions, and three other sufficient conditions to achieve the lower bound. Using these results, we determine the radio number for the Cartesian product of the Peterson graph and stars.
翻译:对于一个无向图 $G$, 其无线电标记是一个函数 $f:V(G)\rightarrow \{0,1,2,\ldots\}$, 使得对于 $G$ 的每一个不同的顶点对 $u,v$, 有 $|f(u)-f(v)|\geq diam(G)+1-d(u,v)$. 图 $G$ 的无线电数记作 $rn(G)$, 是最小的满足 max$\{f(v):v \in V(G)\}=k$ 的 $k$ 值. 本文给出了对于广义 $Petersen$ 图和树的笛卡尔积的无线电数的下界, 给出了两个必要且充分的条件以及三个其他的充分条件以实现下界. 利用这些结果, 确定了 $Peterson$ 图和星形图的笛卡尔积的无线电数.