项目名称: 超声相控阵技术研究复合材料胶接修补结构的疲劳失效机理

项目编号: No.11204158

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 徐喻琼

作者单位: 三峡大学

项目金额: 30万元

中文摘要: 复合材料胶接修补结构在疲劳条件下的使用状况直接关系到修补结构的延寿效率,对修补结构的检测和评价是保证其应用的关键。通过超声检测实现对胶接修补结构的精确评价,不仅有助于深入理解复合材料胶接修补结构的疲劳本质和失效机理,而且对修补结构的设计具有指导意义。本项目以玻璃纤维复合材料胶接修补结构为研究对象,在疲劳试验的基础上,实现超声相阵控技术对胶接修补结构的失效评价。首先,建立胶接修补结构的力学模型,进行疲劳寿命预测;然后,研究阵列换能器声场特性,设计适应于复合材料构件缺陷检测的换能器阵列配置模式;再次,研究相控阵超声检测声束时空控制技术和相位延迟算法,实现检测区域内声束全覆盖和自适应聚焦;最后,研究复合材料胶接修补结构的缺陷回波信号处理方法,进行缺陷特征识别和图像表征的量化评价,提出复合材料胶接修补结构的疲劳损伤表征参量。

中文关键词: 应力分布;微观结构;失效;固化条件;

英文摘要: The status of composite patch repair is directly related to the life extension efficiency of the repaired structure under fatigue the conditions. The detection of the repaired structure is the key to ensure its application. Detection by ultrasound test realizes the accurate evaluation of the structure, not only helping us to understand the fatigue essence and failure mechanism of composite patch but also having a guiding significance for the design of the repaired structure. This work carries out the failure detection of composite patch in the fatigue condition by ultrasonic phased array technology, based on the fatigue testing. First, the mechanical model and the S-N curves for fatigue life is put forward to predict the life of the repaired structure. Then, the characters of acoustic field with array transducer is designed to adapt to the configuration mode which inspects the defects. Next, the technology of temporal and spatial control with the sound beam by ultrasonic detection is investigated, which achieves a whole coverage of testing area and adaptive focusing. Finally, the echo signal processing method of patches is performed to quantitatively identify the defects and images. The fatigue damage parameters of repaired structure are indicated to illustrate the failure mechanism.

英文关键词: Stress distribution;Microstructure;Failure;curing condition;

成为VIP会员查看完整内容
0

相关内容

【NUS】深度长尾学习综述,20页pdf172篇文献
专知会员服务
58+阅读 · 2021年10月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
48+阅读 · 2020年11月20日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
你觉得搭载屏下摄像头有多加分?
ZEALER订阅号
1+阅读 · 2022年3月12日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【NUS】深度长尾学习综述,20页pdf172篇文献
专知会员服务
58+阅读 · 2021年10月14日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年5月9日
小目标检测技术研究综述
专知会员服务
118+阅读 · 2020年12月7日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
48+阅读 · 2020年11月20日
【2020新书】数据结构与数据表示指南,112页pdf
专知会员服务
82+阅读 · 2020年10月6日
相关资讯
你觉得搭载屏下摄像头有多加分?
ZEALER订阅号
1+阅读 · 2022年3月12日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员