The scaled boundary finite element method (SBFEM) is a semi-analytical computational scheme, which is based on the characteristics of the finite element method (FEM) and combines the advantages of the boundary element method (BEM). This paper integrates the scaled boundary finite element method (SBFEM) and the polygonal mesh technique into a new approach to solving the steady-state and transient seepage problems. The proposed method is implemented in Abaqus using a user-defined element (UEL). The detailed implementations of the procedure, defining the UEL element, updating the RHS and AMATRX, and solving the stiffness/mass matrix by the eigenvalue decomposition are presented. Several benchmark problems from seepage are solved to validate the proposed implementation. Results show that the polygonal element of PS-SBFEM has a higher accuracy rate than the standard FEM element in the same element size. For the transient problems, the results between PS-SBFEM and the FEM are in excellent agreement. Furthermore, the PS-SBFEM with quadtree meshes shows a good effect for solving complex geometric in the seepage problem. Hence, the proposed method is robust accurate for solving the steady-state and transient seepage problems. The developed UEL source code and the associated input files can be downloaded from https://github.com/yangyLab/PS-SBFEM.
翻译:缩放的边界限定要素方法(SBFIMEM)是一种半分析分析的计算方法,它基于有限要素方法(FEM)的特性,并结合了边界要素方法(BEM)的优点。本文将按比例缩放的边界限定要素方法(SBFEM)和多角网格技术纳入解决稳定状态和短暂渗出问题的新方法中。提议的方法在Abaquus使用用户定义的元素(UEL)实施。程序的详细实施,界定 UEL 元素,更新 RHS 和 AMATRX,通过eigen值解构解决坚硬性/马斯矩阵。本文介绍了从渗出的一些基准问题,以验证拟议的执行。结果显示,PS-S-SBFEMEMEMM的多元性比同一元素大小的标准FEMM元素的标准化精度要高。对于过敏性问题,PS-S-S-SBS-SBFFEMEMEMEMM和FEMEMM之间的结果十分一致。此外,PS-S-SBIEMEMM-S-SIGIG-IL-ID-IL-IDS-IDS-IFIL-IL-ID-IL-S-IL-IL-IL_Grentrentrentrentrummamadromadromamismismismismismismismismismismismismismismismismismismismismismamamamdrisldromadromadromadromadromadromadromadromadromadromadlementaldlementaldromadromadromadromadromadromadromadromadromadromadromadromadroma, romadromadromamamamamamadromadromadro, ro)。