The Jobs shop Scheduling Problem (JSP) is a canonical combinatorial optimization problem that is routinely solved for a variety of industrial purposes. It models the optimal scheduling of multiple sequences of tasks, each under a fixed order of operations, in which individual tasks require exclusive access to a predetermined resource for a specified processing time. The problem is NP-hard and computationally challenging even for medium-sized instances. Motivated by the increased stochasticity in production chains, this paper explores a deep learning approach to deliver efficient and accurate approximations to the JSP. In particular, this paper proposes the design of a deep neural network architecture to exploit the problem structure, its integration with Lagrangian duality to capture the problem constraints, and a post-processing optimization to guarantee solution feasibility.The resulting method, called JSP-DNN, is evaluated on hard JSP instances from the JSPLIB benchmark library. Computational results show that JSP-DNN can produce JSP approximations of high quality at negligible computational costs.
翻译:工作商店日程安排问题(JSP)是一个班式组合优化问题,通常为各种工业目的解决,它模拟了多种任务的最佳时间安排,每个任务按固定操作顺序排列,其中每个任务都需要在特定处理时间内独家使用预定资源,问题很硬,甚至对中等规模的情况也具有计算上的挑战性。由于生产链中增加的随机性,本文件探讨了一种深层次的学习方法,为JSP提供高效和准确的近似。特别是,本文件提议设计一个深神经网络结构,以利用问题结构,将其与Lagrangian双轨结合,以捕捉问题制约因素,并优化处理后优化,以保证解决方案的可行性。 由此产生的方法称为JSP-DNN,由JSP-DNN,由JSPPLIB基准图书馆评估。比较结果显示,JSP-DNN可以以微不足道的计算成本制作高质量的JSP近似质量的JSP近似值。