Synthetic control (SC) methods have been widely applied to estimate the causal effect of large-scale interventions, e.g., the state-wide effect of a change in policy. The idea of synthetic controls is to approximate one unit's counterfactual outcomes using a weighted combination of some other units' observed outcomes. The motivating question of this paper is: how does the SC strategy lead to valid causal inferences? We address this question by re-formulating the causal inference problem targeted by SC with a more fine-grained model, where we change the unit of the analysis from "large units" (e.g., states) to "small units" (e.g., individuals in states). Under this re-formulation, we derive sufficient conditions for the non-parametric causal identification of the causal effect. We highlight two implications of the reformulation: (1) it clarifies where "linearity" comes from, and how it falls naturally out of the more fine-grained and flexible model, and (2) it suggests new ways of using available data with SC methods for valid causal inference, in particular, new ways of selecting observations from which to estimate the counterfactual.


翻译:合成控制(SC)方法被广泛用于估计大规模干预的因果关系,例如,政策变化的全州影响。合成控制的想法是使用其他单位观察到的结果的加权组合来估计一个单位的反事实结果。本文的动机问题是:SC战略如何导致有效的因果关系推断?我们用一种更细微的模型来重新拟订SC所针对的因果推断问题,从而解决这个问题,我们把分析单位从“大单位”(例如,国家)改为“小单位”(例如,各州的个人)。根据这种重新拟订,我们为非参数性因果关系确定因果关系创造了充分的条件。我们强调重新拟订的两种影响:(1) 它澄清“线性”来自何处,以及它如何自然地从更细微和灵活的模型中掉落,(2) 它提出了使用现有数据使用SC方法进行有效因果关系推断的新方式,特别是选择从观察到反事实估计的新方式。

0
下载
关闭预览

相关内容

SC:International Conference for High Performance Computing, Networking, Storage, and Analysis。 Explanation:高性能计算、网络、存储和分析国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/sc/
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月12日
Arxiv
4+阅读 · 2021年10月19日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员