Land use as contained in geospatial databases constitutes an essential input for different applica-tions such as urban management, regional planning and environmental monitoring. In this paper, a hierarchical deep learning framework is proposed to verify the land use information. For this purpose, a two-step strategy is applied. First, given high-resolution aerial images, the land cover information is determined. To achieve this, an encoder-decoder based convolutional neural net-work (CNN) is proposed. Second, the pixel-wise land cover information along with the aerial images serves as input for another CNN to classify land use. Because the object catalogue of geospatial databases is frequently constructed in a hierarchical manner, we propose a new CNN-based method aiming to predict land use in multiple levels hierarchically and simultaneously. A so called Joint Optimization (JO) is proposed where predictions are made by selecting the hier-archical tuple over all levels which has the maximum joint class scores, providing consistent results across the different levels. The conducted experiments show that the CNN relying on JO outperforms previous results, achieving an overall accuracy up to 92.5%. In addition to the individual experiments on two test sites, we investigate whether data showing different characteristics can improve the results of land cover and land use classification, when processed together. To do so, we combine the two datasets and undertake some additional experiments. The results show that adding more data helps both land cover and land use classification, especially the identification of underrepre-sented categories, despite their different characteristics.
翻译:地理空间数据库中所含的土地利用是城市管理、区域规划和环境监测等不同复制信息的基本投入。本文件建议采用一个等级深层次学习框架来核查土地使用信息。 为此,将采用一个两步战略。首先,如果有高分辨率的空中图像,将确定土地覆盖信息。为此,将提出一个基于电码-脱coder的共生神经网络工程(CNN)的编码-脱coder信息。第二,像素土地覆盖信息以及航空图像是另一个有线电视新闻网用于对土地使用进行分类的输入。由于地理空间数据库的天体目录经常以等级方式构建,因此我们建议采用一种基于CNN的新方法,目的是在多层次和同时预测土地利用情况。提出了一种所谓的“联合优化”信息。为了实现这一点,建议采用基于高层次-分层神经网络工作(CNN)来进行预测,在所有级别上都具有最高联合等级分数,提供不同等级的一致结果。 进行的实验表明,CNN对前一个有线电视新闻网的图像比前一个结果更精确,从而实现总体精确性,尽管有92.5级,我们还是有两种不同等级地样地标,因此,我们也可以进行两种实验中的数据都进行不同的实验。 将两种数据合并在一起进行。 。在两种实验中进行不同的土地覆盖数据。在两种实验时,我们进行两种实验时,我们进行两种实验可以同时进行两种试验,这样进行两种试验,这样进行两种试验,这样进行两种试验,这样进行不同的土地覆盖。