One of the main obstacles to 3D semantic segmentation is the significant amount of endeavor required to generate expensive point-wise annotations for fully supervised training. To alleviate manual efforts, we propose GIDSeg, a novel approach that can simultaneously learn segmentation from sparse annotations via reasoning global-regional structures and individual-vicinal properties. GIDSeg depicts global- and individual- relation via a dynamic edge convolution network coupled with a kernelized identity descriptor. The ensemble effects are obtained by endowing a fine-grained receptive field to a low-resolution voxelized map. In our GIDSeg, an adversarial learning module is also designed to further enhance the conditional constraint of identity descriptors within the joint feature distribution. Despite the apparent simplicity, our proposed approach achieves superior performance over state-of-the-art for inferencing 3D dense segmentation with only sparse annotations. Particularly, with $5\%$ annotations of raw data, GIDSeg outperforms other 3D segmentation methods.


翻译:3D 语义分割的主要障碍之一是为充分监督的培训制作昂贵的点点说明需要付出大量的努力。为了减轻人工劳动,我们建议GIDSeg, 这是一种通过推理全球- 区域结构和个人- 子属性,同时从稀少的注释中学习分解的新办法。 GIDSeg 描述全球和个人关系的方式是动态边缘变异网络,加上一个内分解身份描述符。通过将精细的容留场用在低分辨率的氧化性地图上获得连带效应。在我们的GIDSeg 中,一个对抗性学习模块还旨在进一步加强共同特征分布中身份描述器的有条件限制。尽管显然简单,我们提出的方法在推断3D 密度分解点时取得了优于状态的优异性表现,只有稀薄的描述。 特别是,以5 ⁇ 美元的原始数据说明, GIDSeg 优于其他3D分解法。

0
下载
关闭预览

相关内容

深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
MATLAB玩转深度学习?新书「MATLAB Deep Learning」162页pdf
专知会员服务
101+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员