Even if a Multi-modal Multi-Objective Evolutionary Algorithm (MMOEA) is designed to find solutions well spread over all locally optimal approximation sets of a Multi-modal Multi-objective Optimization Problem (MMOP), there is a risk that the found set of solutions is not smoothly navigable because the solutions belong to various niches, reducing the insight for decision makers. To tackle this issue, a new MMOEAs is proposed: the Multi-Modal B\'ezier Evolutionary Algorithm (MM-BezEA), which produces approximation sets that cover individual niches and exhibit inherent decision-space smoothness as they are parameterized by B\'ezier curves. MM-BezEA combines the concepts behind the recently introduced BezEA and MO-HillVallEA to find all locally optimal approximation sets. When benchmarked against the MMOEAs MO_Ring_PSO_SCD and MO-HillVallEA on MMOPs with linear Pareto sets, MM-BezEA was found to perform best in terms of best hypervolume.
翻译:即使多模式多目标进化测算器(MMOEA)的设计是为了在所有当地最优化的多目标最佳最佳优化问题近似集中找到分布很广的解决方案,也存在这样一种风险,即所找到的一套解决方案并非通航,因为解决方案属于不同位置,减少了决策者的洞察力。为了解决这一问题,提议了新的MMOEAs:多模式B\'ezier进化测算器(MMM-BezEA),它生成了涵盖单个位置的近似集,并展示了固有的决策空间平滑性,因为它们被B\'ezier曲线标定。MM-BezEA结合了最近推出的BezEA和MO-HillVallEA背后的概念,以寻找所有本地最佳的近似集。在以线性Pareto集的MMOEAs MO_Ring_PSO_SCD和MO-HillVallEA为基准时,M-BezEA被发现在最佳超量量值方面表现最佳。