The modern workflow for radiation therapy treatment planning involves mathematical optimization to determine optimal treatment machine parameters for each patient case. The optimization problems can be computationally expensive, requiring iterative optimization algorithms to solve. In this work, we investigate a method for distributing the calculation of objective functions and gradients for radiation therapy optimization problems across computational nodes. We test our approach on the TROTS dataset -- which consists of optimization problems from real clinical patient cases -- using the IPOPT optimization solver in a leader/follower type approach for parallelization. We show that our approach can utilize multiple computational nodes efficiently, with a speedup of approximately 2-3.5 times compared to the serial version.
翻译:现代辐射疗法治疗规划工作流程涉及数学优化,以确定每个病人病例的最佳治疗机参数。优化问题可以计算昂贵,需要反复优化算法解决。在这项工作中,我们调查一种方法,在计算节点之间分配辐射疗法优化问题客观函数和梯度的计算方法。我们在TROTS数据集上测试我们的方法 -- -- 其中包括实际临床病人病例的优化问题 -- -- 使用IPOPT优化处理器在领导/跟踪型方法中使用优化处理机求解器进行平行处理。我们表明,我们的方法可以有效地利用多个计算节点,与序列版本相比,速度约为2.3.5倍。