Virtual machine consolidation describes the process of reallocation of virtual machines (VMs) on a set of target servers. It can be formulated as a mixed integer linear programming problem which is proven to be an NP-hard problem. In this paper, we propose a kernel search (KS) heuristic algorithm based on hard variable fixing to quickly obtain a high-quality solution for large-scale virtual machine consolidation problems (VMCPs). Since variable fixing strategies in existing KS works may make VMCP infeasible, our proposed KS algorithm employs a more efficient strategy to choose a set of fixed variables according to the corresponding reduced cost. Numerical results on VMCP instances demonstrate that our proposed KS algorithm significantly outperforms the state-of-the-art mixed integer linear programming solver in terms of CPU time, and our proposed strategy of variable fixing significantly improves the efficiency of the KS algorithm as well as the degradation of solution quality can be negligible.
翻译:虚拟机器合并描述一组目标服务器上虚拟机器(VMs)的重新分配过程。 它可以被设计成混合整数线性编程问题, 事实证明这是一个NP- 硬问题 。 在本文中, 我们提议基于硬变量的内核搜索( KS) 螺旋算法, 以快速获得大规模虚拟机器合并问题的高质量解决方案( VMCPs ) 。 由于现有 KS 工程中的变数固定战略可能使 VMCP 无法实现, 我们提议的 KS 算法采用了更有效的战略, 以根据相应降低的成本选择一套固定变量。 VMCP 实例的数值结果表明, 我们提议的 KS 算法在CPU 时间方面大大超越了最先进的混合整形线性编程求解器, 而我们提议的变数战略,即大幅提高 KS 算法的效率和解决方案质量的退化可以忽略不计。