项目名称: 仔猪小肠甘氨酸亚铁螯合物吸收转运的分子机制研究

项目编号: No.31472102

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 畜牧学与草地科学

项目作者: 冯杰

作者单位: 浙江大学

项目金额: 85万元

中文摘要: 前期研究发现,甘氨酸亚铁具有较高的生物学利用率,能够快速改善人及动物机体缺铁状态,且对肠道特定膜吸收转运蛋白表达的影响与硫酸亚铁有所不同,然而其吸收转运机制尚不明确。本项目在前期研究基础上,以断奶仔猪为对象,拟通过饲养试验、体内灌胃、体外肠道灌注及小肠刷状缘模型,研究甘氨酸亚铁在肠道中的吸收效率及吸收动力学特点;构建基因表达谱芯片,筛选肠道铁吸收差异表达基因,进一步探寻甘氨酸亚铁吸收转运特异性蛋白;以仔猪小肠上皮细胞为模型,针对关键吸收转运蛋白,进行RNA干扰、膜蛋白抑制阻断及荧光标记膜蛋白追踪试验,研究甘氨酸亚铁跨膜吸收的可能途径及特定膜蛋白在其吸收转运中的功能,同时研究胞内可变铁池、活性氧及铁蛋白表达,探讨甘氨酸亚铁跨膜转运与代谢利用效率。通过上述研究,进一步阐明甘氨酸亚铁螯合物吸收转运的分子机制,为高生物学效价的有机微量元素在动物营养中的深入研究与科学应用提供理论依据。

中文关键词: 断奶仔猪;甘氨酸亚铁;小肠;吸收转运;分子机制

英文摘要: Previous studies have shown that, ferrous glycinate was more efficiency in improving the iron status of human and animals, and had different impacts on the relevant intestinal transporters compared with ferrous sulfate,but the concrete molecule mechanism about its high bioavailability is still unknown. On the basis of previous studies, feeding trial is designed in current project to study the bioavailability of ferrous glycinate on piglets. Intestinal perfusion model in vitro and brush border membrane vesicles model are established to study the absorption efficiency of ferrous glycinate in the intestinal. The kinetics absorption characteristics of ferrous glycinate in the piglets intestinal are determined by perfusion model in vivo. The gene chip analyses are used to reveal differential genetic response to the different iron source, to explore the iron absorption relevant intestinal transporters. The function of relevant membrane protein in the piglets intestinal epithelial cells are evaluated by using small interference RNA, protein inhibitor and fluorescent tracking, and the storage and metabolism of iron in the cells is also researched. Through these studies, the possible absorption and transport molecule mechanism of ferrous glycinate in the piglets intestinal could be clarified, which would lay foundation to the intensive study and scientific use of organic trace elements.

英文关键词: Piglets;Ferrous Glycine Chelate;Intestinal;Absorption and Transport;Molecule Mechanism

成为VIP会员查看完整内容
0

相关内容

光声层析成像技术的最新进展
专知会员服务
11+阅读 · 2022年5月23日
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
37+阅读 · 2022年5月6日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国无线经济白皮书,49页pdf
专知会员服务
16+阅读 · 2021年10月21日
专知会员服务
86+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
专知会员服务
30+阅读 · 2021年4月12日
计算生物学揭秘奥密克戎强感染性原因
微软研究院AI头条
0+阅读 · 2022年4月12日
已删除
将门创投
12+阅读 · 2017年10月13日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月26日
Arxiv
0+阅读 · 2022年5月22日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
光声层析成像技术的最新进展
专知会员服务
11+阅读 · 2022年5月23日
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
37+阅读 · 2022年5月6日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
中国无线经济白皮书,49页pdf
专知会员服务
16+阅读 · 2021年10月21日
专知会员服务
86+阅读 · 2021年10月11日
专知会员服务
29+阅读 · 2021年8月27日
图表示学习在药物发现中的应用,48页ppt
专知会员服务
99+阅读 · 2021年4月30日
专知会员服务
30+阅读 · 2021年4月12日
相关资讯
计算生物学揭秘奥密克戎强感染性原因
微软研究院AI头条
0+阅读 · 2022年4月12日
已删除
将门创投
12+阅读 · 2017年10月13日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员