High-dimensional multinomial regression models are very useful in practice but receive less research attention than logistic regression models, especially from the perspective of statistical inference. In this work, we analyze the estimation and prediction error of the contrast-based $\ell_1$-penalized multinomial regression model and extend the debiasing method to the multinomial case, which provides a valid confidence interval for each coefficient and $p$-value of the individual hypothesis test. We apply the debiasing method to identify some important predictors in the progression into dementia of different subtypes. Results of intensive simulations show the superiority of the debiasing method compared to some other inference methods.
翻译:高维多重回归模型在实践中非常有用,但得到的研究关注比后勤回归模型少,特别是从统计推论角度而言。在这项工作中,我们分析了以对比为基础的以美元为单位的1美元惩罚性多度回归模型的估计和预测错误,并将偏差法扩大到多度回归模型,该模型为每个系数和单项假设测试的美元价值提供了一个有效的置信区间。我们采用偏差法来确定不同子类进入痴呆状态过程中的某些重要预测因素。密集模拟的结果显示,与其它某些推断方法相比,偏差法方法的优越性。