Colonel Blotto games are one of the oldest settings in game theory, originally proposed over a century ago in Borel 1921. However, they were originally designed to model two centrally-controlled armies competing over zero-sum "fronts", a specific scenario with limited modern-day application. In this work, we propose and study Private Blotto games, a variant connected to crowdsourcing and social media. One key difference in Private Blotto is that individual agents act independently, without being coordinated by a central "Colonel". This model naturally arises from scenarios such as activist groups competing over multiple issues, partisan fund-raisers competing over elections in multiple states, or politically-biased social media users labeling news articles as misinformation. In this work, we completely characterize the Nash Stability of the Private Blotto game. Specifically, we show that the outcome function has a critical impact on the outcome of the game: we study whether a front is won by majority rule (median outcome) or a smoother outcome taking into account all agents (mean outcome). We study how this impacts the amount of "misallocated effort", or agents whose choices doesn't influence the final outcome. In general, mean outcome ensures that, if a stable arrangement exists, agents are close to evenly spaced across fronts, minimizing misallocated effort. However, mean outcome functions also have chaotic patterns as to when stable arrangements do and do not exist. For median outcome, we exactly characterize when a stable arrangement exists, but show that this outcome function frequently results in extremely unbalanced allocation of agents across fronts.


翻译:布洛托上校的游戏是游戏理论中最古老的设置之一,最初是一百年前在博雷尔(Borel 1921年)提出来的。然而,这些游戏最初的设计是为了模拟两支中央控制的军队,争夺零和“先锋”的“先锋”,这是当代应用有限的一种特定情景。在这项工作中,我们提议并研究“二等兵布洛托”的游戏,这是与众包和社会媒体相连的一种变体。二等私人布洛托的一个关键区别在于,个人代理人的行为是独立进行的,而没有中央“中枢”的协调。这一模式自然产生于一些情景,例如活动团体在多个州争夺多个问题,党派筹资者争夺选举,或者政治上带有偏见的社会媒体用户将新闻文章标为错误信息。在这项工作中,我们把私人布洛托游戏的稳定性完全定性。具体地说,我们表明,结果函数对游戏的结果具有关键影响:我们研究的是,多数规则(中等结果)还是一个更平稳的结果,但考虑到所有代理人(平均结果),我们的研究是如何影响“误差”的。我们研究这如何影响“努力”的数量,或者代理人的选择甚至意味着,最终的结果是稳定的,结果是稳定的,如果意味着稳定的,结果是稳定的,那么稳定的,结果是稳定的,结果是稳定的,在稳定的,结果是稳定的,在稳定的。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
64+阅读 · 2021年6月18日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员