In this paper, we determine the computational complexity of recognizing two graph classes, grounded \textsc{L}-graphs and stabbable grid intersection graphs. An \textsc{L}-shape is made by joining the bottom end-point of a vertical ($\vert$) segment to the left end-point of a horizontal ($-$) segment. The top end-point of the vertical segment is known as the {\em anchor} of the \textsc{L}-shape. Grounded \textsc{L}-graphs are the intersection graphs of \textsc{L}-shapes such that all the \textsc{L}-shapes' anchors lie on the same horizontal line. We show that recognizing grounded \textsc{L}-graphs is NP-complete. This answers an open question asked by Jel{\'\i}nek \& T{\"o}pfer (Electron. J. Comb., 2019). Grid intersection graphs are the intersection graphs of axis-parallel line segments in which two vertical (similarly, two horizontal) segments cannot intersect. We say that a (not necessarily axis-parallel) straight line $\ell$ stabs a segment $s$, if $s$ intersects $\ell$. A graph $G$ is a stabbable grid intersection graph (\textsc{StabGIG}) if there is a grid intersection representation of $G$ in which the same line stabs all its segments. We show that recognizing \textsc{StabGIG} graphs is NP-complete, even when the input graphs are restricted to be bipartite apex graphs of large (but constant) girth. This answers an open question asked by Chaplick \textit{et al.} (\textsc{O}rder, 2018).


翻译:在本文中, 我们确定识别两个图形类的计算复杂性, 基底 { textsc{ L} 底部 { textsc{ L} 底部和可刺的网格交叉式图形。 将垂直( verti$) 部分的底端点连接到水平段的左端点( $- 美元) 。 垂直段的顶端点被称为\ textsc{ L} shape 。 基底 平面 { textsc{ L} 和可刺穿的网格交叉式图表 。\ textsc{ L} - shape 的交叉式图表是\ textsc{ L} 显示所有垂直端点的底端点( textsc) 。 直端端端端端端端点是 Jel\\ iqu} rqu$美元 。 平面的直端端端点是 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Graph Anomaly Detection with Unsupervised GNNs
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
23+阅读 · 2021年3月4日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员