The largest store of continually updating knowledge on our planet can be accessed via internet search. In this work we study giving access to this information to conversational agents. Large language models, even though they store an impressive amount of knowledge within their weights, are known to hallucinate facts when generating dialogue (Shuster et al., 2021); moreover, those facts are frozen in time at the point of model training. In contrast, we propose an approach that learns to generate an internet search query based on the context, and then conditions on the search results to finally generate a response, a method that can employ up-to-the-minute relevant information. We train and evaluate such models on a newly collected dataset of human-human conversations whereby one of the speakers is given access to internet search during knowledgedriven discussions in order to ground their responses. We find that search-query based access of the internet in conversation provides superior performance compared to existing approaches that either use no augmentation or FAISS-based retrieval (Lewis et al., 2020).
翻译:不断更新我们星球上知识的最大宝库可以通过互联网搜索获得。 在这项工作中,我们研究将这种信息提供给对话代理人。大型语言模型,尽管它们在其份量内储存了大量知识,但众所周知,在开展对话时会幻灭事实(Shuster等人,2021);此外,这些事实在示范培训时被冻结在时间上。相比之下,我们建议采用一种方法,即学习根据背景生成互联网搜索查询,然后在搜索结果上创造条件,以最终生成一个响应,一种可以使用最新到一分钟相关信息的方法。我们用新收集的人类对话数据集来培训和评估这些模型,其中一名发言者在知识驱动的讨论期间可以上网搜索,以找到他们的反应。我们发现,基于搜索访问互联网的功能比现有的不使用增强或基于FASISS检索的方法(Lewis等人,2020年)。