Existing KBQA approaches, despite achieving strong performance on i.i.d. test data, often struggle in generalizing to questions involving unseen KB schema items. Prior ranking-based approaches have shown some success in generalization, but suffer from the coverage issue. We present RnG-KBQA, a Rank-and-Generate approach for KBQA, which remedies the coverage issue with a generation model while preserving a strong generalization capability. Our approach first uses a contrastive ranker to rank a set of candidate logical forms obtained by searching over the knowledge graph. It then introduces a tailored generation model conditioned on the question and the top-ranked candidates to compose the final logical form. We achieve new state-of-the-art results on GrailQA and WebQSP datasets. In particular, our method surpasses the prior state-of-the-art by a large margin on the GrailQA leaderboard. In addition, RnG-KBQA outperforms all prior approaches on the popular WebQSP benchmark, even including the ones that use the oracle entity linking. The experimental results demonstrate the effectiveness of the interplay between ranking and generation, which leads to the superior performance of our proposed approach across all settings with especially strong improvements in zero-shot generalization.


翻译:尽管在i.d.测试数据上取得了强效,但现有的KBQA方法,尽管在I.i.d.测试数据上取得了很强的成绩,但往往在概括涉及隐蔽的KB schema项目的问题方面挣扎不休。先前的排名方法在一般化方法上表现出一定的成功,但在覆盖问题上却受到一定的影响。我们提出了KBQA的排名方法,这是KBQA的一流和一流方法,它用一代模式来补救覆盖问题,同时保留强大的概括化能力。我们的方法首先使用一个对比等级,对通过搜索知识图表获得的一组候选人的逻辑表格进行排位。然后,它引入一个量身定制的一代模式,以问题为条件,而最高级的候选人则以最后的逻辑形式组成。我们在GrariilQA和WebQSP数据集上取得了新的最先进的成果。我们的方法在GrarialQA和WebQSP数据集上大大超越了先前的状态,在GrailQA头板上保持了一种强大的概括化能力。此外,RnG-KQQA方法超越了以前在广端标准上的所有方法,包括了使用高端实体与高级之间的高级互动。

1
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
论文浅尝 | Question Answering over Freebase
开放知识图谱
18+阅读 · 2018年1月9日
论文浅尝 | CFO: Conditional Focused Neural Question Answering
开放知识图谱
6+阅读 · 2017年12月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Type-augmented Relation Prediction in Knowledge Graphs
Arxiv
6+阅读 · 2018年5月22日
VIP会员
相关VIP内容
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
43+阅读 · 2020年11月22日
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
Top
微信扫码咨询专知VIP会员